
© 2009 Carnegie Mellon University

Sponsored by the
U.S. Department of Defense

Designing Software

Architecture to Achieve

Business Goals

Software Engineering Institute

Carnegie Mellon University

Pittsburgh, PA 15213

Len Bass

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
19 FEB 2010 2. REPORT TYPE

3. DATES COVERED
 00-00-2010 to 00-00-2010

4. TITLE AND SUBTITLE
Designing Software Architecture to Achieve Business Goals

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Carnegie Mellon University,Software Engineering
Institute,Pittsburgh,PA,15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
This presentation, which Len Bass gave to the Academy of Software Engineering Education and Training
on March 12, 2010, is based on the truism "Software systems are constructed to satisfy business goals.?
The presentation also answers the questions raised by this truism: Why does the software architect need to
know business goals? How does the software architect determine business goals for a system? Where in
your curriculum is the material taught?

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

62

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

2
Len Bass

Feb 19, 2010

© 2010 Carnegie Mellon University

Business goals

Truism: Software systems are constructed to satisfy business goals.

Question 1: Why does the software architect need to know business

goals?

Question 2: How does the software architect determine the business goals

for a system?

Question 3: Where in your curriculum is this material taught?

3
Len Bass

Feb 19, 2010

© 2010 Carnegie Mellon University

Why does an architect need to know business
goals?
Software design is driven by quality attribute requirements. If software design is

only driven by function, then a monolithic system would suffice. But we routinely
see

• Redundancy to improve availability

• Layers to improve portability

• Caching to improve performance

• …

Quality attribute requirements reflect business goals. Otherwise why does the
requirement exist?

For example, response time requirements might come from

• Differentiating the product from its competition

• Response time makes the soldier a more effective warfighter

• Accurate response time makes the engine run efficiently which leads to customer
satisfaction and more sales

• …

The architect needs to know business goals because they lead to quality attribute
requirements that, in turn, lead to design choices.

4
Len Bass

Feb 19, 2010

© 2010 Carnegie Mellon University

What does this knowledge let the architect do?

Knowledge of business goals enables an architect

• To make informed tradeoffs. Should performance be sacrificed to improve

modifiability? It depends on the business goals for the system.

• To intelligently adjust requirements – e.g. a requirement may state that

response time should be .1 sec but the goal may be to match a competitor’s

response time. If the competitor speeds up their response time during

development, the architect can know the necessity for changing the

requirement.

• To push back on unreasonable requirements. Tight performance

requirements may make a system very expensive to build and may not be

justified. Knowing the business justification for a requirement enables the

architect to push back on unreasonable requirements.

5
Len Bass

Feb 19, 2010

© 2010 Carnegie Mellon University

How does the software architect determine the
business goals for a system?

Despite what classical software engineering teaches, architects need little

of what is in a requirements specification, and requirements specifications

contain little of the information needed by an architect.

…the software
architect

Not useful to…

useful to…

Other information
necessary for
architecture
design

useful to…

Requirements spec

6
Len Bass

Feb 19, 2010

© 2010 Carnegie Mellon University

Architectural requirements are missing from
typical requirements specifications

Architectural requirements are the requirements that drive the design of the
architecture.

• Quality attribute requirements

• Business requirements for the developing organization

Quality attribute requirements are, typically, not well specified.

• The system shall be modular

• The system shall be secure

Business requirements for the developing organization are not specified at all.

• The developing organization wishes to sell the system internationally

• The developing organization wishes to protect IP from sub-contractors

• The developing organization wishes to reuse a particular framework.

7
Len Bass

Feb 19, 2010

© 2010 Carnegie Mellon University

Business goals for organizations involved in
constructing a system

There are multiple organizations involved in most system developments

• Acquiring organization.

— System may be for internal use and not seen outside the acquiring

organization – e.g. CMU travel system

— System may be for external use by and seen outside acquiring

organization – e.g. tele-banking system

— System may be for sale – e.g. Office

• Developing organization(s)

— May be within business unit of acquiring organization

— May be within acquiring organization but within different business unit

from acquiring organization

— May be sub-contractors to the developing organization, e.g. outsourced

portions of the system

8
Len Bass

Feb 19, 2010

© 2010 Carnegie Mellon University

Business goals specific to a system

Each organization has its own business goals for the system under

development

Ideally, the system will satisfy the union of all of the business goals

It is the responsibility of the architect to design the system to satisfy these

goals.

What follows is an approach to gathering the business goals for a system.

9
Len Bass

Feb 19, 2010

© 2010 Carnegie Mellon University

How do we characterize business goals for a
system?

We characterize the business goals in two fashions

1. Goals and how they change

• Canonical business goal categories

• Forces acting on a system over time

2. Source of the goals

• Pedigree

10
Len Bass

Feb 19, 2010

© 2010 Carnegie Mellon University

Categories of Business Goals – taken from a
survey of the business goal literature

1. Growth and continuity of the organization

2. Meeting financial objectives

3. Meeting personal objectives

4. Meeting responsibility towards employees

5. Meeting responsibility towards society

6. Meeting responsibility to country

7. Meeting responsibility towards shareholders

8. Managing market position

9. Improving business processes

10. Managing quality and reputation of products

11
Len Bass

Feb 19, 2010

© 2010 Carnegie Mellon University

Forces acting on the system over time

technology financial

S
o
c
ia

l

System financial

S
o
c
ia

l

Systemtechnology

Time

. . .

12
Len Bass

Feb 19, 2010

© 2010 Carnegie Mellon University

They are categories and forces not goals – as such they are starting points

for a conversation.

Our experience using these categories and forces is that they generate far

reaching conversations, e.g. the product manager viewed a system as

the first element of a product line but the architect was unaware of that

perspective.

Comments on the business goal categories and
forces

13
Len Bass

Feb 19, 2010

© 2010 Carnegie Mellon University

Business goal scenario (pedigree)

We have a syntax to describe a business goal scenario

―Who?‖ defines the stakeholder the goal is serving or affecting.

―What?‖ describes the goal and its benefits and negative influences that

affect each stakeholder.

―When?‖ captures the timing of goals’ effects on stakeholders.

―Where?‖ identifies the location for delivering benefits and other impacts.

―Why?‖ gives the rationale for providing the stakeholder benefits you

deliver.

―How?‖ explains your method of providing your products and services

expressed in the goal and being compensated for them.

―Value‖ expresses the worth of the goal to the organization.

14
Len Bass

Feb 19, 2010

© 2010 Carnegie Mellon University

Eliciting quality attribute requirements

For each business goal, determine how various quality attributes

contribute to its achievement.

E.g. what contribution does performance make to expanding market

share?

This leads to quality attribute requirements and ties these requirements to

business goals.

15
Len Bass

Feb 19, 2010

© 2010 Carnegie Mellon University

In essence, fill out this matrix

Generic

business goal

System

business

goal

Considering

how forces

change over

time

Security

contribution ….

Other QA

contribution

Organizational

goals

Goal Pedigree Goal Pedigree Goal Pedigree

Financial goals Goal Pedigree Goal Pedigree Goal Pedigree

…

Goal Pedigree Goal Pedigree Goal Pedigree

16
Len Bass

Feb 19, 2010

© 2010 Carnegie Mellon University

Output is high level requirements, not detailed requirements. Determining

the business goals and forces that act on them is not a substitute for

normal requirements analysis.

Emphasis on business goals allows architect to make tradeoff decisions.

• Trading off one quality attribute against another

• Trading off cost for a goal

There is some repetition on the goals in the different categories.

Emphasis is on empowering architect, not on providing specific

requirements for the architect to achieve.

Using the business goals

17
Len Bass

Feb 19, 2010

© 2010 Carnegie Mellon University

How are business goals covered in your
curriculum?

Systems as a means of satisfying business goals?

Various organizational stakeholders and their different perspectives?

Eliciting business goals?

Relating business goals to quality attribute requirements?

18
Len Bass

Feb 19, 2010

© 2010 Carnegie Mellon University

Moving to design

Architecturally significant requirements

Design as generate and test

19
Len Bass

Feb 19, 2010

© 2010 Carnegie Mellon University

Architecturally Significant
Requirements - 1

Architecturally significant requirements (ASRs) are the

requirements that impact the structure of the design and should

be the primary focus when doing architectural analysis.

The ASR concept derives from our experience with ATAM

(Architecture Tradeoff Analysis Method). ATAM uses architecture

description from ―30,000 ft‖ level. This perspective enables an

understanding of what drove the architect to create the design

being evaluated.

20
Len Bass

Feb 19, 2010

© 2010 Carnegie Mellon University

Architecturally Significant Requirements – 2

When creating an architecture, the goal is to determine what those ―driving‖

requirements are.

RUP refers to Architecturally Significant Use Cases (same concept)

Recall that quality attribute requirements are the ones that drive the design

=> Architecturally significant requirements are quality attribute

requirements.

21
Len Bass

Feb 19, 2010

© 2010 Carnegie Mellon University

Utility Tree - 1

Quality attribute utility trees provide a mechanism for translating the

business drivers of a system into concrete quality attribute scenarios.

A utility tree lists

• The quality attributes for the particular system being designed as one level

of the tree.

• The quality attribute ―concerns‖ as the next level.

• Quality attribute scenarios are the leaves of the tree

The utility tree at the leaves serves to make concrete the quality attribute

requirements, forcing architect and customer representatives to define

relevant quality attributes precisely.

22
Len Bass

Feb 19, 2010

© 2010 Carnegie Mellon University

Utility Tree - 2

The leaves are prioritized in two dimensions

• The importance to the business of the scenario (H, M, L)

• The pervasiveness within the architecture of the requirements (H, M, L)

Those scenarios rated high importance and high difficulty provide the most

critical context against which the architecture can be analyzed. These

scenarios are candidates for the ASRs.

23
Len Bass

Feb 19, 2010

© 2010 Carnegie Mellon University

Utility Tree - 3

Utility-

Data (I L,M) Reduce storage latency on ----t: customer DB to< 200 ms.

(M, M) Deliver video in real time. -[
latency

-Performance T .
ransactlon

throughput
New

-[
products

- Modifiability Change
COTS

(H,H) Add CORBAmiddleware
in < 20 person-months.

(H L) ~hange Web user interface
~..:.-.:....': m < 4 person-weeks.
(H,H) Power outage at site1 requires . --c traffic to be redirected to site 2

{

HIIN failure in< 3 seconds.

-Availability Network failure detected and
COTS SMJ (H,H) recovered in< 1.5 minutes.

failures (H, M)

- Security confidentiality secure 99.999Yo of the time.
Data Customer DB authorization -[

Data ~ Credit card tra~sactions. are

.------:-:,---,-------,..,..-------, integrity (H L) works 99.999% of the time.
I L = Low, M = Medium, H = High I '

SCJftwara Engineering lnstibJta CarnegieMclloo

24
Len Bass

Feb 19, 2010

© 2010 Carnegie Mellon University

Quality Attribute Data from SEI ATAMs1

QA Dist. QA QA Concern Dist. QA Concern Dist.

1 Modifiability 14.1% Modifiabillity new/revised functionality/components 6.4% authentication 16.9%

2 Performance 13.6% Usability operability (e.g. can do) 4.1% multi level security 13.0%

3 Usability 11.4% Modifiability upgrade/add hardware components 3.9% access control 10.4%

4 Maintainability 8.5% Performance response time/deadline 3.6% ability to change security policy 9.1%

5 Interoperability 7.8% Performance latency 3.2% data integrity 6.5%

6 Security 7.3% Modifiability portable to other platforms 3.1% intrusion detection 6.5%

7 Configurability 6.9% Interoperability operate intra-service (e.g. ship-to-ship) 2.8% confidentiality 5.2%

8 Availability 6.8% Usability ease of operation: can do within a time limit 2.7% data identification 5.2%

9 Reliability 5.7% Performance throughput 2.1% data protection 5.2%

10 Scalability 3.2% Performance resource utilization 1.9% blocking 5.2%

11 Testability 2.6% Availability failure recovery/containment 1.9% sanitization 5.2%

12 Affordability 2.0% Configurability flexibility (range of operation scenarios) 1.7% accountability 3.9%

13 Reusability 1.9% Availability graceful degradation 1.6% service disruption 2.6%

14 Integrability 1.9% Interoperability compliance to standards/protocols 1.5% malicious code 2.6%

15 Safety 1.1% Affordability affordability of various decisions (e.g. opennes) 1.5% denial of service 1.3%

16 User data management 1.0% Modifiability replace COTS 1.4% migration of security in later release 1.3%

17 Portability 0.8% Performace real time 1.4%

18 Assurance 0.8% Availability fault tolerance 1.3%

19 Product line 0.8% Configurability discovery (new configuration) 1.3%

20 Net-centric operation 0.5% Security authentication 1.3%

(c)(a) (b)

QA Concerns QAs Security-related QA Concerns

1 Ipek Ozkaya, Len Bass, Raghvinder Sangwan and Robert Nord. Making Practical Use of Quality Attribute

Information, IEEE Software special issue on Software Quality Requirements, March/April 2008.

25
Len Bass

Feb 19, 2010

© 2010 Carnegie Mellon University

Design as Generate and Test

Design is the process of

• generating a hypothesis,

• testing that hypothesis,

• generating a new hypothesis, and

• repeating until hypothesized design passes the tests

Several questions result from this view of the design process

• Where does the initial hypothesis come from?

• What does it mean to test a hypothesis?

• Where does the new hypothesis come from?

26
Len Bass

Feb 19, 2010

© 2010 Carnegie Mellon University

Initial Design Hypothesis - 1

The initial design hypothesis comes from one of several sources (in order

of preference):

1. From similar successful systems to that being built. Successful

systems similar to the one being constructed have dealt with most of

the issues facing the current system.

2. From a legacy system. If the current system is an extension to a legacy

system, then the initial hypothesis comes from the legacy system and

the next hypothesis will deal with problems raised through the testing

process.

27
Len Bass

Feb 19, 2010

© 2010 Carnegie Mellon University

Initial Design Hypothesis - 2

3. A collection of frameworks and pre-existing components. If the system
is going to be largely created from frameworks and pre-existing
components, then the initial hypothesis consists of these frameworks
and components connected with empty connectors. The testing
process will determine how the connectors get filled in.

4. A pattern. Multiple patterns exist both in books and on the web. These
patterns present solutions to recurring problems. If a pattern exists that
can satisfy one of the architecturally significant requirements, then this
provides a starting place. Such patterns typically, however, will not
address more than one of the architecturally significant requirements.
Differrent patterns can be chosen to address each architecturally
significant requirement but then the patterns must be composed to get
an overall pattern.

28
Len Bass

Feb 19, 2010

© 2010 Carnegie Mellon University

Initial Design Hypothesis - 3

5. From first principles of quality attributes–tactics

6. From functional/logical view. In this case, the testing will disclose

missing quality attribute requirements that need to be addressed.

29
Len Bass

Feb 19, 2010

© 2010 Carnegie Mellon University

Output of test stage

We will test the hypothesis with a collection of test cases.

The output of the tests will be

• Additional responsibilities that need to be addressed

• List of quality attribute problems

Source of test cases

• Architecturally significant requirements

• Quality attribute specific use cases

• Architectural design decisions

Testing technique

• Analytic models

• Simulation models

• Scenario walk throughs

• prototypes

30
Len Bass

Feb 19, 2010

© 2010 Carnegie Mellon University

Architecturally significant requirements as test
cases

Architecturally significant requirements are the ones that the architecture

design must satisfy

As such, they are obvious test cases for any design hypothesis.

31
Len Bass

Feb 19, 2010

© 2010 Carnegie Mellon University

Quality Attribute Specific Use Cases - 1

There are a collection of quality attribute use cases that should be used as
test cases in addition to the architecturally significant requirements.

Based on consideration of functionality:

• expected operation exercising major capabilities

• exceptions

• growth and exploratory scenarios

• deferred binding time

• version upgrades

• modification scenarios

Look for

• Allocation of responsibilities to modules

• Responsibilities associated with exception management

• Responsibilities associated with deferred binding time.

32
Len Bass

Feb 19, 2010

© 2010 Carnegie Mellon University

Quality Attribute Specific Use Cases - 2

Based on consideration of parallelism:

• two users doing similar tasks simultaneously

• one user performing multiple activities simultaneously

• start-up (creating threads that must be in waiting mode, initializing
connected devices, etc.)

• shutdown (cleaning up similar finishing activities, storing data, etc.)

Look for

• Points of resource contention (synchronization),

• Opportunities for parallelism (creation of new threads)

• Necessity for killing processes (deleting threads)

• Additional responsibilities to manage points of contention and clean
up

• Management of user state

33
Len Bass

Feb 19, 2010

© 2010 Carnegie Mellon University

Quality Attribute Specific Use Cases - 3

Based on consideration of multiple processors

• installation

• initialization

• processing across processors

• messaging over the network

• disconnected operation

• failure of an element (e.g., process, processor, network)

For each use case

• Determine desired policy

• Determine mechanisms to achieve desired policy

• Determine responsibilities to implement chosen mechanisms

34
Len Bass

Feb 19, 2010

© 2010 Carnegie Mellon University

Architectural Design Decisions

Important structures to be used to test a design

• Allocation of Functionality

• Coordination Model

• Data and object Model

• Management of Resources

• Mapping Among Architectural Elements

• Binding Time Decisions

• Choice of Technology

35
Len Bass

Feb 19, 2010

© 2010 Carnegie Mellon University

Allocation of Functionality

Allocation of functionality decisions assign responsibilities to software

elements. Decisions involving allocation of functionality include

Identifying the important responsibilities and their abstractions, and the

operations that they provide.

Determining how these responsibilities are allocated to hardware and

software, run-time and non run-time elements (components and

modules), e.g. functional decomposition, decomposition based on

frame rates, decomposition based on modeling real-world objects,

information hiding decomposition, …

Identifying the major modes of operation and determining how they are

realized. Examples of major modes include startup, normal processing,

overload processing, backup/recovery, degraded operation, etc. They

might also be application- or domain-specific, such as takeoff, landing,

level flight, etc.

36
Len Bass

Feb 19, 2010

© 2010 Carnegie Mellon University

Coordination Model

Software ―works‖ by elements interacting with each other in useful and

productive ways through designed mechanisms. Choosing those

interaction mechanisms is the task associated with designing the

coordination model. Decisions about the coordination model include

• Identifying the elements of the system that need to coordinate—directly or

indirectly—and the properties of that coordination, such as timeliness,

currency, completeness, correctness, consistency, etc.

• Choosing the coordination model (between systems, between our system

and external entities, between elements of our system) and the

communication mechanisms that realize this model.

• Understanding the information that system and external entities share and

how consistent this information needs to be over time.

• Deciding the properties of the communication mechanisms; e.g. stateful,

stateless, synchronous, asynchronous, guaranteed delivery, throughput,

latency, etc.

37
Len Bass

Feb 19, 2010

© 2010 Carnegie Mellon University

Data and object Model

Every system represents objects and artifacts of external interest in an

internal fashion. Choosing the data and object model means choosing

how the software will represent those items of interest. Here the major

design decisions include

• Choosing the major data abstractions, their operations, their properties.

• Determining how the data items are created, initialized, persisted,

manipulated, translated, destroyed.

38
Len Bass

Feb 19, 2010

© 2010 Carnegie Mellon University

Management of Resources

One of the critical responsibilities of an architecture is to arbitrate the

usage of shared resources. Management of resources includes

• Identifying the resources that need to be managed: hard resources (e.g.

CPU, memory, battery, hardware buffers, system clock, I/O ports, etc.) and

soft resources (e.g. system locks, software buffers, thread pools, etc.)

• Determining the resource limits.

• Determining which system element(s) manage each resource.

• Determining the resources that are shared and how these are arbitrated;

e.g., the process/thread models employed; the scheduling strategies

employed

39
Len Bass

Feb 19, 2010

© 2010 Carnegie Mellon University

Mapping Among Architectural Elements

Whereas architecture comprises multiple structures, and each structure

comprises multiple elements, those elements across structures must

have predetermined associations with each other in order for the design

to make holistic sense. Mapping among architectural elements

involves

• Deciding what are the elements in different architectural structures and how

they map to each other. Examples include

— the mapping of modules and runtime elements to each other: the

runtime elements that are created from each module; the modules that

contain the code for each runtime element.

— the assignment of runtime elements to processors.

— the assignment of items in the data model to data stores.

— the mapping of modules and runtime elements to units of delivery.

40
Len Bass

Feb 19, 2010

© 2010 Carnegie Mellon University

Binding Time Decisions

Not all architectural decisions are made on the design table; some are

intentionally delayed, so as to bring about greater flexibility and

facilitate change. Binding time decisions involve deciding how and

when decisions in the other models are resolved. Possible answers

include

• compile time (e.g., compiler switches)

• build time (e.g., replace modules, pick from library)

• load time (e.g., dynamic link libraries [dlls])

• initialization time (e.g., resource files)

• run time (e.g., load balancing)

41
Len Bass

Feb 19, 2010

© 2010 Carnegie Mellon University

Choice of Technology

The architect must often determine which available technologies will be

utilized. This involves

• Knowing which technologies that are available to realize the decisions

made in the other models.

• Investigating the available tools to support this technology choice (IDEs,

testing tools, etc.)

• Knowing what external support is available for the technology, such as

courses, tutorials, examples, internal familiarity, availability of contractors

who can provide expertise in a crunch, etc.

42
Len Bass

Feb 19, 2010

© 2010 Carnegie Mellon University

There is a checklist for each of the cells in the following matrix

Checklists

Availability Modifiability Security …

Allocation of

functionality

Checklist

questions

Coordination

model

Data and

Object

Model

…..

43
Len Bass

Feb 19, 2010

© 2010 Carnegie Mellon University

Determine the system responsibilities that need to be highly available.

With respect to those responsibilities, ensure that:

• coordination mechanisms exist to detect an omission, crash, incorrect

timing, incorrect response.

• coordination mechanisms exist to log the fault, notify appropriate entities,

disable the source of events causing the fault, fix or mask the fault, or

operate in a degraded mode

• failures of system responsibilities, and the artifacts that support them

(processors, communications channels, persistent storage, processes) can

be communicated and replaced, e.g. does failure of an external entity

cause the coordination to fail?

Determine if the coordination will work under conditions of degraded

communication, at startup/shutdown, in repair mode, or under

overloaded operation, e.g. how much lost information the coordination

model can withstand and with what consequences?

Sample checklist cell - Coordination x Availability

44
Len Bass

Feb 19, 2010

© 2010 Carnegie Mellon University

Summary of hypothesis testing

Use architecturally significant requirements to identify specific portions of

the current hypothesis that are relevant to the satisfaction of these

requirements

Use various quality attribute testing techniques to determine whether

quality attribute requirements are satisfied

Use quality attribute specific use cases and architecturally significant

requirements to determine additional responsibilities that should be

included in the next hypothesis.

45
Len Bass

Feb 19, 2010

© 2010 Carnegie Mellon University

Generating alternatives for next hypothesis

Tactics

Tactics -> responsibilities

Generating new hypothesis from tactics and responsibilities

46
Len Bass

Feb 19, 2010

© 2010 Carnegie Mellon University

Tactics

Tactics are architectural means of controlling parameters of a model of a

quality attributes.

We will explore models and tactics for performance. Lists of tactics exist

for other quality attributes as well.

47
Len Bass

Feb 19, 2010

© 2010 Carnegie Mellon University

Queuing Model for Performance

arrivals
queue

server

results

Parameters:

• Arrival rate

• Queuing discipline

• Scheduling algorithm

• Service time

• Topology

• Network bandwidth

• Routing algorithm

Latency can be affected only by

changing one of the parameters.

Scheduling

algorithm

Routing of

messages

48
Len Bass

Feb 19, 2010

© 2010 Carnegie Mellon University

Controlling Performance Parameters

Architectural means (tactics) for controlling the parameters of a
performance model

• Arrival rate – restrict access, differential rate/charging
structure, constrain message size

• Queuing discipline – first-come first served (FCFS), priority
queues, etc.

• Service time

— Increase efficiency of algorithms.

— Cut down on overhead (reduce inter-process
communication, use thread pools, use pool of DB
connections, etc.).

— Use faster processor.

• Scheduling algorithm – round robin, service last interrupt first,
etc.

• Topology – add/delete processors

• Network bandwidth – faster networks

• Routing algorithm – load balancing

49
Len Bass

Feb 19, 2010

© 2010 Carnegie Mellon University

Tactics are transformations on responsibilities
and structure- 1

A tactic is one (or more) of the following types of transformations

• modify responsibility. The tactic increase message size can be
achieved by modifying the responsibilities that construct
messages to construct larger messages.

• introduce new responsibilities. The tactic introduce concurrency
requires that responsibilities for forking the concurrent threads
and joining those threads together be introduced.

• Introduce new structural elements. The tactic maintain multiple
copies requires elements to store the new copy and maintain
consistency among the copies.

50
Len Bass

Feb 19, 2010

© 2010 Carnegie Mellon University

Tactics are transformations on responsibilities
and structure- 2.

• modify the properties of a responsibility. The tactic reduce
execution time will result in a modification of a property
(execution time) of the responsibility that is being made
more efficient.

• decompose responsibilities. The tactic maintain multiple
copies will result in the responsibility of storing information
into one location being decomposed (and augmented) into
responsibilities that store the information and synchronize
the information with other locations.

• reallocate responsibilities. The tactic reduce computational
overhead may result in responsibilities being reallocated
from one process into another to reduce interprocess
communication.

51
Len Bass

Feb 19, 2010

© 2010 Carnegie Mellon University

Generate next hypothesis

At this point we have as a result of the test phase

• Additional responsibilities as a result of responsibilities discovered
through test cases or through tactics

• Revised responsibilities as a result of decomposition.

• Constraints on the allocation of responsibilities to modules as result
of tactics.

• Other constraints on responsibilities such as budgeted execution
time

These responsibilities and their constraints are merged with the
current hypothesis to generate the next hypothesis.

52
Len Bass

Feb 19, 2010

© 2010 Carnegie Mellon University

Summary of design

Design is the process of generate and test.

The initial design is generated from existing or similar systems, frameworks and
components, or patterns.

The design is tested against the architecturally significant requirements, a
collection of quality attribute use cases, architectural decision categories to derive
additional responsibilities and constraints on responsibilities.

The design is analyzed against quality attribute models to discover shortcomings.

Tactics are used to propose alternatives for improving the design

The next hypothesis is generated based on additional responsibilities and
constraints discovered during test and analysis.

53
Len Bass

Feb 19, 2010

© 2010 Carnegie Mellon University

Curriculum question

Where in your curriculum do you teach architectural design (not O-O

design)?

54
Len Bass

Feb 19, 2010

© 2010 Carnegie Mellon University

Experiences with being a client

I have been a client for a MSE studio three times:

• ArchE core. ArchE is a tool intended to support quality attribute oriented

design.

• ArchE adding a reasoning framework. ArchE is intended to be extensible

and we defined a language for adding capability relative to additional quality

attributes.

• Usability Supporting Architectural Patterns checklist. This is a tool that

allows an architect to review their own design with respect to a collection of

responsibilities necessary to support particular usability features – e.g.

customization

55
Len Bass

Feb 19, 2010

© 2010 Carnegie Mellon University

Client morale with respect to a project

Morale

Project inception

•I wonder how they will do

•At least they are breathing

Time

56
Len Bass

Feb 19, 2010

© 2010 Carnegie Mellon University

Client morale with respect to a project

Morale

Month 1:

•Why don’t they seem to understand what the

system is supposed to do?

•I don’t care what process they are using, I want to

see some results.

Time

57
Len Bass

Feb 19, 2010

© 2010 Carnegie Mellon University

Client morale with respect to a project

Morale

Month 3:

•I think they have gotten it, finally.

•Maybe now I can see a design

Time

58
Len Bass

Feb 19, 2010

© 2010 Carnegie Mellon University

Client morale with respect to a project

Morale

Month 4:

•This design shows they don’t get it

at all

•What can I suggest to get them on

the right track?

Time

59
Len Bass

Feb 19, 2010

© 2010 Carnegie Mellon University

Client morale with respect to a project

Morale

Month 5:

•They seem to be back on track

•They want to cut out the most

important things

Time

60
Len Bass

Feb 19, 2010

© 2010 Carnegie Mellon University

Results of projects

ArchE core – unqualified success

ArchE extension – project was successful but we never used it because

the language approach wasn’t the right approach

Usability Supporting Architectural Pattern checklist – at project close I

thought it was a success but then I tried to make a simple performance

enhancement. The internals were abysmal. The students had no

understanding of what should go in the front end (browser side) and

what should be in the back end (content management, data base side).

I ended up rewriting the whole thing.

61
Len Bass

Feb 19, 2010

© 2010 Carnegie Mellon University

Discussion question with respect to projects

Who is responsible for quality control?

• Clearly not the clients.

• In the last project, the system underwent an architectural review but the

architecture was the standard three tier architecture and did not expose the

students lack of understanding of what to put in each tier.

• When I was a mentor, I did not get into the details of the code the students

wrote. Should the mentors be in charge of quality control?

62
Len Bass

Feb 19, 2010

© 2010 Carnegie Mellon University

Final questions??

- Software Engineering Institute Carnegie Mellon

